Reactions of α -Halo Ketones with Nucleophiles¹

Glen A. Russell* and Francisco Ros²

Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011. Received October 9, 1984

Abstract: p-Nitro- or p-cyanophenacyl chloride or the 1,1-dimethyl derivatives react with the anion of 2-nitropropane to form the C-alkylation product by a radical chain mechanism (S_{RN} 1). With the 1,1-dimethyl derivatives, the free radical substitution is photostimulated and occurs in competition with ionic reactions leading to the oxiranes 5 and hydroxy ketones 6. When K^{+} is used as the counterion, the S_{RN}1 process is favored by complexation with 18-crown-6. p-Nitro-1,1-dimethylphenacyl chloride gives substitution products with diethyl malonate or diethyl methylmalonate anions via the S_{RN} process, but with PhS^- or p-MeC₆H₄SO₂⁻, substitution occurs by competing ionic and radical processes. Propylacetylenide anion reacts to form the oxirane 13a while diethyl phosphite or thiophosphite anions yield the enol phosphate 14a or thiophosphate 14b. 1,1-Dimethylphenacyl chloride reacts by nonradical processes to give the oxirane with acetylenide anions, the substitution products with PhS⁻ or p-MeC₆H₄SO₂⁻ and a mixture of the enol phosphate, and oxirane 16 with diethyl phosphite anion. With $Me_2C=NO_2^{-1}K^+$, mainly the oxirane is formed in Me_2SO but mainly substitution via the S_{RN}^{-1} chain is observed in HMPA.

 α -Halocarbonyl compounds are potential substrates for substitution by an electron-transfer chain reaction (S_{RN}1) involving reactions 1-3 (Scheme I).

The radical anion of p-nitrophenacyl bromide is known to decompose (reaction 1) in aqueous solution to yield the p-nitrophenacyl radical with a rate constant of 4.1×10^4 s⁻¹ while the radical anion of p-nitrobenzyl bromide, a known substrate for S_{RN}1 processes, decomposes only slightly faster ($k = 1.7 \times 10^5 \text{ s}^{-1}$).³ Some carbonyl derivatives, such as the α -halomercurials (RCOCH₂HgX), will participate in the S_{RN} process with nitronate anions $(R_2C=NO_2)$, but in this instance, the carbonyl group does not seem to play an important role in the reaction since similar substitution processes are observed for simple 1°-, 2°-, or 3°-alkylmercury halides.⁴ Similarly, α -nitro ketones and esters undergo S_{RN} 1 substitutions with nitronate anions.^{5,6}

One indication that α -halo ketones may be susceptible to electron-transfer chain reactions is the observation that Ph₂C-(Br)CONMe₂ undergoes reductive dehalogenation by MeO⁻/ $Me_2C(OMe)_2$, a process suggested to involve the reactions of Scheme II.³

Results and Discussion

Reactions of p-nitro- or p-cyanophenacyl chlorides 1a and b with 1 equiv of $Me_2C = NO_2^{-}K^+$ in EtOH or Me_2SO yield the

Scheme I. S_{RN¹} Mechanism

$$\begin{array}{l} RC(=O)CH_2X^{-} \rightarrow RCOCH_2 \cdot + X^{-} \qquad (1) \\ RCOCH_2 \cdot + A^{-} \rightarrow RCOCH_2A^{-} & (2) \\ RCOCH_2A^{-} \cdot + RCOCH_2X \rightarrow RCOCH_2A + RCOCH_2X^{-} & (3) \\ \hline RCOCH_2X + A^{-} \rightarrow RCOCH_2A + X^{-} \end{array}$$

Scheme II

$$\begin{array}{ll} Ph_{2}(Br)CONMe_{2}^{-} \rightarrow Ph_{2}CCONMe_{2} + Br^{-} & (4) \\ Ph_{2}CCONMe_{2} + CH_{3}O^{-} \rightarrow Ph_{2}CHCONMe_{2} + CH_{2}O^{-} & (5) \\ CH_{2}O^{-} + Ph_{2}C(Br)CONMe_{2} \rightarrow CH_{2}O + Ph_{2}C(Br)CONMe_{2}^{-} & (6) \\ \hline Ph_{2}C(Br)CONMe_{2} + CH_{2}O^{-} \rightarrow CH_{2}O + Ph_{2}CHCONMe_{2} + Br^{-} \end{array}$$

- (1) "Electron Transfer Processes", Part 34. This work was supported by Grants CHE-7823866 and CHE-8119343 from the National Science Foundation.
- (2) Postdoctoral Fellow of the Consejo Superior de Investigaciones Cien-
- tificas (Spain), 1979-1981.
 (3) Behar, D.; Neta, P. J. Phys. Chem. 1981, 85 690. Neta, P.; Behar, D. J. Am. Chem. Soc. 1980, 102, 4798.
- (4) Russell, G. A.; Hershberger, J.; Owens, K. J. Am. Chem. Soc. 1979,
- (1) [1312; J. Organomet. Chem. 1982, 225, 43.
 (5) Kornblum, N.; Boyd, S. D.; Stuchal, F. W. J. Am. Chem. Soc. 1970, 92, 5783. Kornblum, N.; Boyd, S. D. Ibid. 1970, 92, 5784.
 (6) Russell, G. A.; Norris, R. K.; Panek, E. J. J. Am. Chem. Soc. 1971, 34, 620.
- 93. 5839
- (7) Simig, G.; Lempert, K.; Tamas, J.; Szepsey, P. *Tetrahedron Lett.* **1977**, 1151. Simig, G.; Lempert, K.; Vali, Z.; Toth, G.; Tamas, J. *Tetrahedron* **1978**, *34*, 2371. Simig, G.; Lempert, K. *Chem. Ber.* **1961**, *61*, 607.

elimination products 2a and b from the alkylation product expected for the S_{RN}1 process (reaction 7). In EtOH, isolated yields of

25.00

$$p \cdot YC_{6}H_{4}COCH_{2}Cl + Me_{2}C = NO_{2}^{-} \xrightarrow{25 \text{ C}}$$

$$1a, Y = NO_{2}$$

$$1b, Y = CN$$

$$[p \cdot YC_{6}H_{4}COCH_{2}CMe_{2}NO_{2}] \rightarrow p \cdot YC_{6}H_{4}COCH = CMe_{2} (7)$$

2a and 2b were 31% (20-min reaction period) and 16% (90 min), respectively. A radical chain substitution mechanism is supported by the observation that 10 mol % of $(t-Bu)_2NO$ completely suppressed the formation of 2 in EtOH or Me₂SO.

To avoid the consumption of the nucleophile in the elimination process, and to decrease the probability of direct $S_N 2$ substitution, we have studied the reactions of the 1,1-dimethylphenacyl halides 3 with a variety of nucleophiles. Reaction of 3 with $Me_2C = NO_2^{-1}$

in Me₂SO (Table I) yielded mixtures of 4-6. In the case of 3c

the reactions were further complicated by products of reactions 8 and 9.

The C-alkylation products 4a-c were not formed in the presence of $(t-Bu)_2NO_2$, and the yield of 4 was lower in the dark than with sunlamp irradiation. Conversely, the yields of 5 and 6 were higher

$$3c + Me_2C = NO_2^- \rightarrow Me_2C(Cl)NO_2 + PhCOCMe_2^- \xrightarrow{H} 7$$

PhCOCMe₂H (8)

$$Me_2C = NO_2^- + Me_2C(Cl)NO_2 \xrightarrow{S_{RN}l} Me_2C(NO_2)CMe_2(NO_2) + Cl^- (9)$$

8

0002-7863/85/1507-2506\$01.50/0 © 1985 American Chemical Society

Table I. Reaction of Phenacyl Halides (3) with $Me_2C=NO_2^-M^+$ in Me_2SO^a

substrate	M+	conditions ^b	time, min	4 (%) ^c	5 (%) ^c	6 (%) ^c
3a	Li ⁺	hν	80	38	7	36
3a	K+	hv	80	41 (36)	16 (6)	32 (26)
3a	K+	dark	80	29	19	36
3a	K+	hν, 10 mol % DNB	45	28	16	31
3a	K+	hv, 10 mol % DBNO	80	0	18	69
3a	K ⁺ -18-crown-6	hv	80	77	10	10
3a'	Li ⁺	hν	45	19	45	24
3a'	К+	hv	15	8 (6)	62 (45)	4(1)
3a'	К+	$h\nu$, 20 mol % DBNO	15	0	61	5
3a'	K ⁺ -18-crown-6	hν	45	51	28	4
3a'	K ⁺ -18-crown-6	dark	45	40	28	11
3a'	K ⁺ -18-crown-6	$h\nu$, 20 mol % DNB	45	27	48	5
3a'	K ⁺ -18-crown-6	$h\nu$, 20 mol % DBNO	45	0	78	6
3b	К+	hv	60	51 (40)	12	18
3b	K+	dark	60	9	19	48
3b	K+	hν, 15 mol % DNB	60	7	18	32
3b	K+	$h\nu$, 15 mol % DBNO	60	0	21 (14)	49 (39)
3b	K ⁺ -18-crown-6	hv	60	69	5	12
3c	Li ⁺	hν	900	8	0	<5 ^{d.e}
3c	К+	hν	900	4	60	12 ^e
3c	K ⁺ -18-crown-6	hν	900	14 (7)	0	$15 (11)^{ef}$
3c	K ⁺ -18-crown-6	dark	900	0	<5	39 9
3c	K ⁺ -18-crown-6	hν, 25 mol % DBNO	900	0		15 ^{e.g}
<u>3c</u>	K ⁺ (HMPA)	hν	1 50	39	9	12 ^h

^aStandard conditions: the α -halo ketone (1 mmol) in Me₂SO was added with stirring under N₂ to Me₂C=NO₂⁻M⁺ in Me₂SO, prepared in situ from Me₃COM or Me₃COK/18-crown-6 (1/1) (1.05 mmol) and Me₂CHNO₂ (1.05 mmol) to give solution with [Li⁺] = [K⁺-18-crown-6] = 0.1 M; [K⁺] = 0.3 M (Me₂C=NO₂K was initially insoluble in Me₂SO). ^bhv: irradiation with a 275-W sunlamp at ca. 50 cm. Dark: flash was wrapped with aluminum foil. DNB = p-dinitrobenzene. DBNO = (t-Bu)₂NO·. ^cYield by ¹H NMR analysis; numbers in parentheses represent yields of isolated products by TLC. ^d18% of 9 isolated. ^e3c, 7, and 8 were detected (<25%). ^f7% of 9 isolated. ^g9 not detected. ^h2% of 9.

in the dark or in the presence of the nitroxide. We thus have competing free radical and ionic reactions leading to 4 or a mixture of 5 and 6, respectively.

Products 5 and 6 are apparently formed by nucleophilic attack at the carbonyl group by the nitronate anion (N^- , Scheme III). The hydroxy ketone 6a was not formed from 5a under the hydrolytic workup employed, nor was 6a formed under the reaction conditions from a reaction between 5a and N^- .

By use of K^+ -18-crown-6 as the counterion, it was possible to obtain reasonable yields of the $S_{RN}1$ products 4a and b in the photostimulated reactions of 3a (77%), 3a' (51%), and 3b (69%). Under these conditions, 3c gave only 14% of 4c in Me₂SO although in HMPA (K⁺, hv) the yield of 4c was increased to 39%. From experiments in the dark, it appears that spontaneous (thermal) initiation of the $S_{RN}1$ process follows the order 3a, 3a' > 3b > 3c. This order parallels the ease of formation of 3^- from 3 as measured by electrochemical reduction.

The counterion had an effect not only upon the competition between the radical 4 and ionic (5 and 6) components of the reaction but also upon the partitioning of the ionic products between 5 and 6. The experiments of Table I involved homogeneous experiments initially 0.1 M in Li⁺ or K⁺-18-crown-6 and initially heterogeneous experiments with 0.3 M Me₂C=NO₂⁻K⁺. In all cases the yield of 4 (or the ratio 4/(5 + 6)) was higher for the K⁺-18-crown-6 experiments than for Li⁺ or the heterogeneous Me₂C=NO₂⁻K⁺ experiments. The yield of 5, and in most cases the ratio 5/6, was higher for the heterogeneous Me₂C=NO₂⁻K⁺ reactions than for the homogeneous reactions (Li⁺ or K⁺-18crown-6). For 3a' and 3c the heterogeneous reactions with Me₂C=NO₂⁻K⁺ were reasonably selective, giving 62% (5a/6a = 16) and 60% (5c/6c = 5) yields of 5a and 5c, respectively.

Although the ratios of 4/(5 + 6) appear to reflect the competition between electron transfer and nucleophilic attack, one could imagine that both types of products are formed from an initial electron transfer to yield Me₂CNO₂-p-YC₆H₄C(O⁻)CMe₂X. Escape from the cage of the ketyl radical anion followed by elimination of X⁻ would give the S_{RN}1 chain and product 4. Collapse of the caged radical pair followed by internal nucleophilic displacement of X⁻ could yield 5 and 6. However, if both types of products result from an initial electron transfer, it is not obvious why irradiation or the nature of the counterion and solvent has such a large effect on the ratio of the products. Since ionic

association seems to definitely favor the formation of 5 and 6, the results may indicate that $Me_2C=NO_2^-K^+$ is less associated in HMPA than in Me_2SO-18 -crown-6. Alternately, the anion may be equally reactive in both solvent systems, but 18-crown-6 may lead to a slight retardation of the $S_{RN}1$ radical chain process by virtue of hydrogen-transfer reactions.

Reaction of the anion of nitrocyclohexane with 3a (Me₂SO, K⁺, $h\nu$, 2 h) yielded 10 and 6a in 77% and 17% isolated yields. In the dark, the yield of 10 decreased to 56%. With irradiation but in the presence of 8 mol % of (t-Bu)₂NO, 10 was not formed and 6a (35%) and oxirane 11 (14%) were isolated.

Table II presents data for the reaction of 3a with the nucleo-

philes $(EtO_2C)_2CH^-$, $(EtO_2C)_2CMe^-$, PhS⁻, p-MeC₆H₄SO₂⁻, *n*-PrC=C⁻, (EtO)_2PO⁻, and (EtO)_2PS⁻. The malonate, benzenethiolate, and *p*-tolylsulfinate anions yielded mainly the substitution products **12a-d**, the acetylenide gave the oxirane **13a**

while diethyl phosphite or thiophosphite anions yielded the enol phosphate and thiophosphate (14a and b).

The formation of 12a and b clearly occurred by the $S_{RN}1$ chain. The yields were increased by sunlamp irradiation, and the formation of 12a and b was completely suppressed by 10 mol % of $(t-Bu)_2NO$. Small amounts of the hydroxy ketone 6a were formed, possibly by a mechanism similar to that of Scheme III. Surprisingly, the reaction of 3a with ethyl cyanoacetate anion gave 12e in good yield in the presence or absence of $(t-Bu)_2NO$ or galvinoxyl (Table III).

Reaction of 3a' with $(EtO_2C)_2CMe^-K^+$ in Me₂SO failed to yield the substitution product, even with irradiation. A 22% yield of the hydroxy ketone **6a** was obtained, but the major product appeared to be a dimer of p-O₂NC₆H₄COCMe₂ (42%) with four different methyl groups whose chemical shifts (δ 0.94, 1.47, 1.53, 1.63) were consistent with the oxirane **15**, possibly formed by the reactions of Scheme IV. ¹H NMR of the crude reactions mixtures indicated that **15** was also a minor reaction product of **3a** with $(EtO_2C)_2CMe^-$. The bromo ketone **3a'** had a much greater reactivity than the chloro ketone **3a** in the ionic reactions of Schemes III and IV.

The reactions of PhS⁻ or $p-MeC_6H_4SO_2^-$ with 3a (Table II) to give 12c and d involved both ionic and free radical processes (Figures 1 and 2). The reactions were photostimulated but also occurred, albeit at a slower rate, in the presence of $(t-Bu)_2NO$ or galvinoxyl. A substitution of the S_N^2 type to yield 12c and d may be occurring with these nucleophiles. The sulfone 12d was not formed by halogen exchange to give $p-O_2NC_6H_4COCMe_2^-$

Table II. Reaction of p-O₂NC₆H₄COCMe₂Cl (**3a**) with Nucleophiles^{*a*}

nucleophile	conditions ^b	product (yield) ^c
(EtO ₂ C) ₂ CH ⁻ K ⁺	Me_2SO , $h\nu$, 75 min	12a (49%), 6a (22%)
$(EtO_2C)_2CH^-K^+$	Me_2SO , dark, 75 min	12a (36%) ^d
$(EtO_2C)_2CH^-K^+$	Me_2SO , $h\nu$, 10 mol %	12a $(0\%)^d$
	DBNO, 75 min	
$(EtO_2C)_2CMe^-K^+$	$Me_2SO, h\nu, 90 min$	12b (62%), 6a (5%) ^e
$(EtO_2C)_2CMe^-K^+$	Me ₂ SO, dark, 90 min	12b (30%) ^{d.e}
$(EtO_2C)_2CMe^-K^+$	Me_2SO , $h\nu$, 10 mol %	12b (0%), ^d 6a (17%) ^e
	DBNO, 90 min	
PhS ⁻ K ⁺	EtOH, 120 min	12c (77%)√
PhS ⁻ K ⁺	$Me_2SO, h\nu, 120 min$	12c (97%)
p-MeC ₆ H ₄ SO ₂ -Na ⁺	Me_2SO , $h\nu$, 390 min	12d (100%)
n-PrC≡C ⁻ Li ⁺	THF, -60 to 25 °C, 720	13a (67%)
	min	
(EtO) ₂ PO ⁻ K ⁺	$Me_2SO, h\nu, 120 min$	14a (35%) ^{d.g}
(EtO) ₂ PO ⁻ K ⁺	THF, 0 °C, 10 mol %	14a (77%) ^d
-	DBNO, 60 min	
(EtO) ₂ PO ⁻ K ⁺	THF, $h\nu$, 900 min	14a (75%) ^d
$(EtO)_2 PO^-K^{+h}$	THF, 900 min	14a (72, ^d 55%)
(EtO) ₂ PS ⁻ K ⁺	$Me_2SO, h\nu, 780 min$	14b (85%) ^d
(EtO) ₂ PS ⁻ K ⁺	THF, 180 min	14b (70, ^d 46%)

^aReactions were conducted at room temperature under N₂ with 1 equiv of the nucleophile. ^b hv: irradiation with a 275-W sunlamp at ca. 50 cm. Dark: flask wrapped with aluminum foil. DBNO = $(t-Bu)_2NO$. ^cIsolated yield except as noted. ^d ¹H NMR yield. ^e15 detected (<15%). ^fp-O₂NC₆H₄COCHMe₂ detected (~5%). ^g50% of 3a recovered. ^hTwo equivalents of (EtO)₂PO⁻K⁺.

Table III. Reactions of p-O₂NC₆H₄COCMe₂Cl (3a) with N=CCHCO₂Et⁻K⁺

conditions ^a	%12e ^b
Me ₂ SO, 40 °C, $h\nu$, 90 min	63
Me ₂ SO, 40 °C, hv, 7 mol % DBNO, 90 min	69
Me ₂ SO, 40 °C, 11 mol % galvinoxyl, 90 min	58
DMF, -20 °C, 60 min	38
DMF, -20 °C, 13 mol % DBNO, 60 min	39
DMF, -20 °C, O ₂ , 60 min	39

^aReactions were performed with a 1/1 ratio of reactants, 0.4 M in Me₂SO and 0.09 M in DMF. $h\nu$: irradiation with a 275-W sunlamp at ca. 50 cm. Dark: flask wrapped with aluminum foil. DBNO = $(t-Bu)_2NO$. ^bBy ¹H NMR.

Scheme IV

 $3a' + (EtO_2C)_2CMe^- \rightarrow \rho - O_2NC_6H_4COCMe_2^- + (EtO_2C)_2C(Me)Br$

and p-MeC₆H₄SO₂Cl since reactions of either PhCOCMe₂⁻ or p-O₂NC₆H₄COCMe₂⁻ with p-MeC₆H₄SO₂Cl failed to yield the sulfone. Diethyl phosphite and thiophosphite anions reacted in a modified Perkov reaction⁸ to yield the enol phosphate and thiophosphates (**14a** and **b**) in reactions that were not inhibited by (t-Bu)₂NO.

Table IV presents data for the reactions of 3c with nucleophiles other than $Me_2C=NO_2^-$. All the products are those expected from ionic processes. C-Alkylation was not observed with $(EtO_2C)_2CMe^-$, even with irradiation. Reaction with PhS⁻, *n*-BuS⁻, or *p*-MeC₆H₄SO₂⁻ yielded the substitution products 12f-h

⁽⁸⁾ Lichtenthaler, F. W. Chem. Rev. 1961, 61, 607.

Figure 1. Reaction of 0.1 M p-O₂NC₆H₄COCMe₂Cl (3a) with 0.1 M PhS⁻K⁺ in EtOH at 0 °C; (O) irradiation with a 275-W sunlamp; (\bullet) dark; (Δ) sunlamp with 8 mol % (t-Bu)₂NO·; (Δ) 27 mol g (t-Bu)₂NO· in the dark; (**I**) 12 mol % p-dinitrobenzene in the dark.

Figure 2. Reaction of 0.2 M p-O2NC6H4COMe2Cl (3a) with 0.2 M p-MeC₆H₄SO₂-Na⁺ in Me₂SO at 40 °C; (O) irradiation with 275-W sunlamp; (\bullet) dark; (Δ) sunlamp with 10 mol % galvinoxyl; (\Box) saturated with O_2 in the dark; (×) 11 mol % *p*-dinitrobenzene in the dark; (**I**) sunlamp with 5 mol % (t-Bu)2NO.

by processes which were neither photostimulated nor inhibited by $(t-Bu)_2NO$. Acetylenides in THF yielded the oxiranes 13b

and c while $(EtO)_2PO^-$ gave a mixture of the Perkov product 14c and the oxirane 16 in a 1.6:1 ratio (¹H NMR of the distilled reaction product).

Experimental Section

Reagents. α -Chloro-*p*-nitroacetophenone (1a),⁹ α -chloroisobutyrophenone (3c),¹⁰ and diethyl thiophosphite¹¹ were prepared according to the literature. α -Chloro-*p*-cyanoacetophenone (1b) was prepared by the chlorination of p-cyanoacetophenone with sulfuryl chloride in CHCl₃ to give 1b in 74% yield, mp 91-95 °C (lit.¹² mp 98-100 °C). α-Chloro-pnitroisobutyrophenone (3a) was prepared from p-nitroisobutyrophenone¹³ in 70% yield by reaction with Cl₂ in acetic acid, mp 54-57 °C; ¹H NMR

Table IV. Reaction of PhCOCMe₂Cl (3c) with Nucleophiles^a

nucleophile	conditions ^b	product (yield) ^c	
(EtO ₂ C) ₂ CMe ⁻ K ⁺	Me ₂ SO, 25-50 °C, 23 h	6c (62, ^d 37% ^e)	
PhS ⁻ K ⁺	Me_2SO , 5.5 h	12f (74%)√	
PhS ⁻ K ⁺	EtOH, $h\nu$, 3 h	12f (39%) ^{f.g}	
PhS ⁻ K ⁺	EtOH, dark, 3 h	12f (36%) ^{f.g}	
PhS ⁻ K ⁺	EtOH, $h\nu$, 5 mol %	12f (38%) ^{f.g}	
	DBNO, 3 h		
n-BuS ⁻ K ⁺	$Me_2SO, 2h$	12g (67%)√	
<i>p</i> -MeC ₆ H ₄ SO ₂ ⁻ Na ⁺	Me ₂ SO, 60 °C, 16 h	12h (82%)	
p-MeC ₆ H ₄ SO ₂ -Na ⁺	$Me_2SO, h\nu, 13 h$	12h $(41\%)^d$	
p-MeC ₆ H ₄ SO ₂ Na ⁺	Me_2SO , dark, 20 mol %	12h (42%) ^d	
	DBNO, 13 h		
n-PrC≡C⁻Li ⁺	THF, -60 to 25 °C, 12 h	13b (96%)	
PhC≡C ⁻ Li ⁺	THF, -60 to 25 °C, 12 h	13c (57%)	
(EtO) ₂ PO ⁻ K ⁺	Me ₂ SO, 50 °C, 36 h	14c $(34\%)^d$	
	-	$16 (22\%)^d$	

^a Reactions conducted at room temperature under N₂ with 1 equiv of nucleophile unless otherwise noted. ${}^{b}h\nu$: irradiation with a 275 W sunlamp at ca. 50 cm; dark: flask was wrapped with aluminum foil; DBNO = $(lerl-Bu)_2NO \cdot c$ Isolated yield except as noted. d Yield by ¹H NMR. *87% of (EtO₂C)₂CHMe recovered. ^fPhCOCMe₂H (8) detected (<20%). ^gYield by GLC.

 $(CDCl_3) \delta 1.90 (s, 6), 8.25 (s, 4); IR (KBr) 1685, 1527, 1354 cm^{-1};$ HRMS calcd for C10H9NO3 (P-HCl) 191.05825, found 191.05594. Anal. Calcd for $C_{10}H_{10}CINO_3$: C, 52.75; H, 4.44; Cl, 15.57. Found: C, 52.88; H, 4.43; Cl, 15.60.

Bromination of p-nitroisobutyrophenone by Br₂ in CCl₄ formed α bromo-p-nitroisobutyrophenone (3a') in 95% yield, mp 59-60 °C; ¹H NMR (CDCl₃) & 2.02 (s, 6), 8.23 (s, 4); IR (Nujol) 1680, 1530, 1350 cm⁻¹; HRMS calcd for C₁₀H₁₀BrNO₃ 270.98440, found 270.98420.

Reduction of p-nitroisobutyrophenone with Sn in concentrated hydrochloric acid/EtOH gave p-aminoisobutyrophenone in 95% yield, mp $107-109 \text{ °C}; ^{1}\text{H NMR} (\text{CDCl}_{3}) \delta 1.19 (d, 6, J = 7 \text{ Hz}), 3.44 (sept, 1, 1)$ J = 7 Hz), 4.15 (br s, 2), 6.62 (d, 2, J = 9 Hz), 7.70 (d, 2, J = 9 Hz); IR (KBr) 3400, 3330, 3225, 1642, 1588 cm⁻¹. Diazotization followed by treatment with CuCN gave p-cyanoisobutyrophenone in 72% yield, mp 45-47 °C: ¹H NMR (CDCl₃) δ 1.14 (d, 6, J = 7 Hz), 3.46 (sept, 1, J = 7 Hz), 7.72 (d, 2, J = 9 Hz), 8.02 (d, 2, J = 9 Hz); IR (KBr) 2230, 1677 cm⁻¹. Chlorination with Cl₂ in HOAc followed by TLC with CCl_4 eluent gave α -chloro-*p*-cyanosiobutyrophenone (3c) as an oil in 60% yield: ¹H NMR (CDCl₃) δ 1.90 (s, 6), 7.81 (d, 2, J = 9 Hz), 8.26 (d, 2, J = 9 Hz); IR (CCl₄) 2225, 1690 cm⁻¹; HRMS calcd for C₁₁H₁₀ClNO 270.04509, found 207.04475.

Lithium tert-butoxide was prepared and had a neutralization equivalent of 78.5 (calcd 80.1). Solvents were distilled from calcium hydride and stored under N2 over molecular sieves.

General Procedures. Solutions of nucleophiles were prepared immediately before use by addition of the conjugate acid under N_2 to a molar equivalent of lithium or potassium tert-butoxide in the desired solvent. Acetylenides were prepared by reaction with n-butyllithium. The solutions were deoxygenated by bubbling nitrogen for 15-30 min followed by the addition via syringe of a deoxygenated solution of the substrate. For irradiated experiments, a 275-W sunlamp was positioned ca. 50 cm from the Pyrex reaction flask. For reactions in the dark, the flask was wrapped with aluminum foil. The crude products obtained by hydrolysis and Et₂O extraction were analyzed by ¹H NMR by using DMF, Me₂SO, or CH₂Br₂ as internal standards. Separations by TLC were performed on silica gel with pure compounds extracted by CHCl₃ or Et₂O.

 α -Isopropylidene-*p*-nitroacetophenone (2a). A solution of 1.37 g of 1a in 9 mL of warm EtOH was added to Me₂C=NO₂·K⁺ prepared from 0.61 g of 2-nitropropane in 10 mL of EtOH. After 20 min, the mixture was poured into water and extracted with ether to give 1.50 g of product. By TLC (hexane-ethyl acetate, 4:1) of a 0.42-g aliquot there was obtained 0.12 g of **2a** (31%), mp 103-106 °C: ¹H NMR (CDCl₃) δ 2.07 (d, 3, J = 1 Hz), 2.27 (d, 3, J = 1 Hz), 6.74 (7, 1), 8.05 (d, 2, J = 8 Hz),8.31 (d, 2, J = 8 Hz); IR (KBr) 1655, 1594, 1517, 1341 cm⁻¹. HRMS calcd for C₁₁H₁₁NO₃ 205.01390, found 205.01362. Anal. Calcd for C₁₁H₁₁NO₃: C, 64.37; H, 5.41; N, 6.83. Found: *m/e* 205.01362; C, 64.17; H, 5.41; N, 6.76. In a similar experiment in Me₂SO (72 min), the yield of **2a** by ¹H NMR was 22%. With 10 mol % of $(t-Bu)_2NO_{2}$, 2a was not detected (Me_2SO , 75 min).

 α -Isopropylidene-*p*-cyanoacetophenone (2b). Reaction of 1.72 g of 1b with $Me_2C = NO_2^-K^+$ prepared from 0.85 g of 2-nitropropane in 25 mL of EtOH for 1.5 h gave 1.51 g of a crude oil which by TLC afforded 16% of **2b**, mp 70–75 °C: ¹H NMR (CDCl₃) δ 2.06 (d, 3, J = 1 Hz), 2.25 (d, 3, J = 1 Hz), 6.70 (m, 1), 7.72 (d, 2 J = 8 Hz), 8.02 (d, 2, J = 8 Hz);IR (KBr) 2222, 1660, 1608 cm⁻¹; HRMS calcd for $C_{12}H_{11}NO$

⁽⁹⁾ Hach, V.; Kvita, V.; Kolinsky, J.; Macek, K. Collect. Czech. Chem. Commun. 1963, 28, 266.

 ⁽¹⁰⁾ Wyman, D. P.; Kaufman, P. R. J. Org. Chem. 1959, 29, 1956.
 (11) Krawiecki, C.; Michalski, J. J. Chem. Soc. 1960, 881.
 (12) Zunckell, F. Chem. Zentr. 1912, 136.

⁽¹³⁾ Inukai, T.; Yoshizawa, R. J. Org. Chem. 1967, 32, 404.

184.076 24, found 184.076 37. Anal. Calcd for $C_{12}H_{11}NO:$ C, 77.80; H, 6.00; N, 7.56. Found: C, 77.69; H, 6.18; N, 7.44. In a similar experiment with 10 mol % of (t-Bu)2NO, 2b was not detected by ¹H NMR (1.5 h).

 α -(2-Nitro-2-propyl)-p-nitroisobutyrophenone (4a). The chloro ketone 3a (4.23 g) in Me₂SO was added to Me₂C=NO₂⁻K⁺ prepared from 1.66 g of 2-nitropropane (total volume 50 mL) and allowed to react for 2 h in ordinary laboratory light. Hydrolysis and ether extraction followed by digestion of the crude solid in 200 mL of refluxing pentane for 10 h and recrystallization from hexane-benzene gave 1.71 g (33%) of 4a, mp 107-109 °C: ¹H NMR (CDCl₃) δ 1.38 (s, 6), 1.79 (s, 6) 7.57 (d, 2, J = 9 Hz), 8.23 (d, 2, J = 9 Hz); IR (KBr) 1686, 1539, 1526, 1352 cm⁻¹; HRMS calcd for $C_{13}H_{16}NO_3$ (P–NO₂) 234.113 03, found 234.113 27. Anal. Calcd for $C_{13}H_{16}N_2O_5$: C, 55.70; H, 5.77; N, 10.00. Found: C, 55.91; H, 5.90; N, 10.01. Analysis of the crude reaction product by ¹H NMR gave a yield of 4a of 42% and a yield of 6a of 16%.

2,2-Dimethyl-3-(p-nitrophenyl)-3-(2-nitro-2-propyl)oxirane (5a). Reaction of 0.272 g of 3a' with Me₂C=NO₂⁻K⁺ (from 0.094 g of 2nitropropane) in 3.3 mL of Me₂SO with sunlamp irradiation for 15 min gave by TLC (benzene-ethyl acetate, 8:1) 6% of 4a, 1% of 6a, and 45% of **5a**, mp 140–144 °C: ¹H NMR (CDCl₃) δ 1.04 (s, 3), 1.36 (s, 3), 1.53 (s, 3), 1.70 (s, 3), 7.25 (d, 2, J = 8 Hz), 8.35 (d, 2, J = 8 Hz); IR (KBr)1520, 1348 1330, 1250, 948, 850 cm⁻¹; HRMS calcd for $C_{13}H_{16}NO_2$ (P-NO₂) 234.11303, found 234.11382. Anal. Calcd for C₁₃H₁₆N₂O₅: C, 55.70; H, 5.77; N, 10.00. Found: C, 55.71; H, 5.81; N, 9.92. Reaction of **5a** (0.50 mmol) and Me₂C=NO₂^{-Li⁺} (0.60 mmol) in Me₂SO (2 mL) for 1 h followed by hydrolysis and Et₂O extraction gave a quantitative recovery of 5a.

 α -(2-Nitro-2-propyl)-p-cyanoisobutyrophenone (4b). Irradiation of 0.209 g of 3b and $Me_2C=NO_2^-K^+$ (from 0.098 g of 2-nitropropane) in 4 mL of Me₂SO for 1 h gave, after digestion of the crude solid reaction product in 15 mL of refluxing pentane (16 h), 40% of 4b, mp 124-128 °C: ¹H NMR (CDCl₃) δ 1.37 (s, 6), 1.79 (s, 6), 7.46 (d, 2, J = 8 Hz), 7.70 (d, 2, J = 8 Hz); IR (KBr) 2230, 1679, 1530, 1342, cm⁻¹; HRMS calcd for $C_{14}H_{16}NO$ (P-NO₂) 214.12319, found 214.12340. Anal. Calcd for C₁₄H₁₆N₂O₃: C, 64.59; H, 6.21; N, 10.76. Found: C, 64.72; H, 5.87; N, 11.29.

2,2-Dimethyl-3-(p-cyanophenyl)-3-(2-nitro-2-propyl)oxirane (5b) and α -Hydroxy-p-cyanoisobutyrophenone (6b). Repetition of the previous experiment in the presence of 15 mol % of (t-Bu)₂NO afforded by TLC (benzene-ethyl acetate, 13:1) 5b (14%) and 6b (39%) as oils. Oxirane **5b**: ¹H NMR (CDCl₃) δ 1.03 (s, 3), 1.35 (s, 3), 1.50 (s, 3), 1.67 (s, 3), 7.77 (s, 4); IR (neat) 2260, 1350, 1240, 964, 829 cm⁻¹; HRMS calcd for C14H16NO (P-NO2) 214.123 19, found 214.123 62. Anal. Calcd for C₁₄H₁₆N₂O₃: C, 64.59; H, 6.21; N, 10.76. Found: C, 64.33; H, 6.12; N, 10.59. Hydroxy ketone 6b: ¹H NMR (CDCl₃) δ 1.61 (s, 6), 3.36 (br s, 1), 7.76 (d, 2, J = 9 Hz), 8.18 (d, 2, J = 9 Hz); IR (neat) 3470, 2225, 1678 cm⁻¹; HRMS calcd for C₁₁H₉NO (P-H₂O) 171.06841, found 171.068 75. Anal. Calcd for C₁₁H₁₁NO₂: C, 69.81; H, 5.87; N, 7.40. Found: C, 68.73; H, 5.89; N, 7.21.

 α -(1-Nitro-1-cyclohexyl)-p-nitroisobutyrophenone (10) and α -Hydroxy-p-nitroisobutyrophenone (6a). Addition of 0.626 g of 3a in 2 mL of Me₂SO to the K⁺ salt prepared from 0.355 g of nitrocyclohexane in 5 mL of Me₂SO, followed by 2 h irradiation, gave, after hydrolysis, ether extraction, and digestion in 100 mL of refluxing pentane (8 h), 0.583 g of 10 (66%), mp 127-129 °C (from hexane-benzene): ¹H NMR (CD-Cl₃) δ 0.9–2.2 (m), 1.33 (s), 2.72 (br d, 2), 7.52 (d, 2, J = 9 Hz), 8.24 (d, 2, J = 9 Hz); IR (KBr) 1682, 1535, 1521, 1353 cm⁻¹; HRMS calcdfor C₁₆H₂₀NO₃ (P-NO₂) 274.14433, found 274.14322. Anal. Calcd for C₁₆H₂₀N₂O₅: C, 59.98; H, 6.31; N, 8.75. Found: C, 59.92; H, 6.40; N, 8.75

The pentane soluble reaction product afforded an additional 11% of 10 and 17% of 6a as an oil isolated by TLC (benzene-ethyl acetate, 4:1): ¹H NMR (CDCl₃) δ 1.64 (s, 6), 3.27 (br s, 1), 8.38 (s, 4); IR (neat) 3450, 1690, 1525, 1352 cm⁻¹; HRMS calcd for $C_{9}H_{3}NO_{4}$ (P-CH₃) 194.045 34, found 194.04578. Anal. Calcd for $C_{10}H_{11}NO_{4}$: C, 57.40; H, 5.31; N, 6.70. Found: C, 57.30; H, 5.49; N, 6.56. Repetition of the reaction in the dark gave by TLC 56% of 10 and 29% of 6a

2,2-Dimethyl-3-(1-nitro-1-cyclohexyl)-3-(p-nitrophenyl)oxirane (11). Reaction of 0.412 g of 3a with the K⁺ salt of nitrocyclohexane (from 0.236 g of nitrocyclohexane) in 5 mL of Me₂SO in the presence of 8 mol % of $(t-Bu)_2NO$ with sunlamp irradiation for 2 h gave by TLC (benzene-ethyl acetate, 4:1) 35% of 6a and 14% of 11: ¹H NMR (CDCl₃) δ 0.9-2.3 (m), 1.03 (s), 1.50 (s), 7.73 (d, J = 9 Hz), 8.29 (d, J = 9 Hz); IR (KBr) 1520, 1360, 1335, 1255, 851 cm⁻¹; HRMS calcd for C₁₆H₂₀-NO₃ (P-NO₂) 274.14432, found 274.14420. Anal. Calcd for C16H2N2O5: C, 59.98; H, 6.31. Found: C, 59.46; H, 5.76. Compound 10 was not detected in this reaction.

Reactions of the Anion of 2-Nitropropane with 3c. The reactions of $Me_2C = NO_2^-M^+$ with 3c in Me_2SO gave mixtures of products not easily separable by distillation but partially resolved by TLC. However, analysis by ¹H NMR of the methyl singlets was possible. Yields in Table I are based on the chemical shifts for the known PhCOCMe₂CMe₂NO₂ (4c, δ 1.40, 1.77),¹⁴ PhCOCMe₂OH (6c, δ 1.54), PhCOMe₂Cl (3c, δ 1.88), $O_2NCMe_2CMe_2NO_2$ (9, δ 1.73), $Me_2C(Cl)NO_2$ (7, δ 2.13), and PhCOCMe₂H (8 δ 1.15, 1.26). In the presence of K⁺-18-crown-6 in Me₂SO, 4c (7%), 6c (11%), and 9 (7%) were isolated by TLC by using C_6H_6 as the eluent. The heterogeneous reaction with 0.3 M Me₂C= NO2-K⁺ in Me2SO gave predominately (60%) a product with four methyl singlets at δ 0.98, 1.31, 1.47, and 1.63, which by analogy with **5a** and **b** can be assigned to the oxirane 5c. Distillation at 100 °C (0.1 torr) gave a mixture enriched in 5c but still contaminated with 3c and 6c.

Diethyl (2-(p-Nitrobenzoyl)-2-propyl)malonate (12a). Reaction of 486 mg of 3a with the anion from 340 mg of diethyl malonate in 6 mL of Me₂SO for 75 min with irradiation gave by distillation a fraction, bp 145-160 °C (1 torr), from which 22% of 6a was isolated by TLC (benzene-ethyl acetate, 4:1). Distillation also yielded 12a (49%), bp 147-149 °C (0.01 torr): ¹H NMR (CCl₄) δ 1.29 (t, 6, J = 7 Hz), 1.36 (s, 6), 4.10 (s, 1), 4.18 (q, 4, J = 7 Hz), 7.64 (d, 2, J = 8 Hz), 8.25 (d, 2, J = 8 Hz); IR (neat) 1790, 1736, 1700, 1531, 1356 cm⁻¹; HRMS calcd for C₁₅H₁₆NO₆ (P-C₂H₅O) 306.777, found 306.09722. Anal. Calcd for $C_{17}H_{21}NO_7$: C, 58.10; H, 6.04. Found: 58.13; H, 6.02. Diethyl Methyl(2-(p-nitrobenzoyl)-2-propyl)malonate (12b). The

reaction of 3.07 g of 3a with (EtO₂C)₂CMe⁻K⁺ prepared from 2.63 g of diethyl methylmalonate in 37 mL of Me₂SO was irradiated for 1.5 h. Hydrolysis and ether extractions gave a liquid which was distilled to give 6a (5%), bp 98-108 °C (0.1 torr), and 12b (62%), bp 145-152 °C (0.01 torr): ¹H NMR (CDCl₃) δ 1.28 (t, 6, J = 7 Hz), 1.37 (s, 6), 1.67 (s, 3), 4.23 (q, 4, J = 7 Hz), 7.70 (d, 2, J = 9 Hz), 8.14 (d, 2, J = 9 Hz); IR (neat) 1728, 1699, 1529, 1353 cm⁻¹; HRMS calcd for C₁₆H₁₈NO₆ (P-C₂H₅O) 320.11342, found 320.11238. Anal. Calcd for C₁₈H₂₃NO₇: C, 59.16; H, 6.36. Found: C, 59.35; H, 6.50.

Reaction of Diethyl Methylmalonate Anion with 3a' and 3c. Irradiation of 0.304 g of 3a' and $(EtO_2C)_2CMe^-K^+$ (from 0.189 g of diethyl methylmalonate) in 4 mL of Me₂SO for 1 h gave by TLC (benzene-ethyl acetate, 16:1) 13% of 6a and 26% of 2,2-dimethyl-3-(2-(p-nitrobenzoyl)-2-propyl)-3-(p-nitrophenyl)oxirane (15), mp 125-132 °C: 1H NMR (CDCl₃) δ 0.94 (s, 3), 1.47 (s, 3), 1.53 (s, 3), 1.63 (s, 3), 7.48 (d, 2, J = 9 Hz), 8.12 (d, 2, J = 9 Hz), 8.31 (s, 4); IR (KBr) 1670, 1512, 1340, 1253, 934, 850 cm⁻¹. Anal. Calcd for $C_{20}H_{20}N_2O_6$: N, 7.29. Found: N, 7.08.

Reaction of 2.76 g of 3c with (EtO₂C)₂CMe⁻K⁺ (from 2.63 g of diethyl methylmalonate) in 40 mL of Me₂SO for 4 h at room temperature and 19 h at 50 °C gave by distillation 87% of recovered diethyl methylmaonate and 37% of 6c, bp 121-124 °C (14 torr) [lit.15 bp 125 °C (12 torr)]: ¹H NMR (CCl₄) δ 1.54 (s, 6), 4.00 (br s, 1), 7.5 (m, 3), 8.1 (m, 2).

 α -(Phenylthio)-p-nitroisobutyrophenone (12c). Reaction with PhS⁻K⁺ (prepared from 1.78 g of benzenethiol) with 3.67 g of 3a in 43 mL of Me₂SO for 2 h with irradiation yielded after hydrolysis and ether extraction 12c (97%), mp 89-90 °C from hexane: ¹H NMR (CDCl₃) δ 1.53 (s, 6), 7.28 (s, 5), 8.30 (s, 4); IR (KBr) 1676, 1518, 1352 cm⁻¹; HRMS calcd for $C_{16}H_{15}NO_3S$ 301.077 27, found 301,075 91. Anal. Calcd for C₁₆H₁₅NO₃S: C, 63.76; H, 5.03; S, 10.64. Found: C, 63.91; H, 5.05; S, 10.41. In EtOH with room light the reaction (2 h) gave 77% of 12c recrystallized from hexane. For the reaction in Figure 1, the consumption of 3a was followed by hydrolyzing aliquots and analyzing by ¹H NMR.

 α -(p-Methylbenzenesulfonyl)-p-nitroisobutyrophenone (12d). To a stirred solution of 342 mg of sodium p-tolylsulfinate in 4 mL of Me₂SO was added 436 mg of 3a in 4 mL of Me₂SO. The solution was irradiated for 6.5 h, poured onto ice, and extracted with ether to give 675 mg of 12d (100%), which upon recrystallization from hexane-benzene had mp 115–116 °C: ¹H NMR (CDCl₃) δ 1.65 (s, 6), 2.47 (s, 3), 7.30 (d, 2, J = 9 Hz), 7.65 (d, 2, J = 9 Hz), 8.06 (d, 2, J = 9 Hz), 8.30 (d, 2, J = 99 Hz); IR (KBr) 1700, 1526, 1354, 1301, 1155, 1129 cm⁻¹; HRMS calcd for C17H17NO5S 347.08275, found 347.08296. Anal. Calcd for C₁₇H₁₇NO₅S: C, 58.77; H, 4.94; S, 9.23. Found: C, 58.92; H, 4.95; S, 9.11.

The reactions in Figure 2 were initially 0.2 M in 3a and sodium p-tolylsulfinate. The yields of 12d were determined by hydrolyzing aliquots and analyzing the ether extracts by ¹H NMR. A similar reaction in Me₂SO-EtOH (1.8:1) in the dark at 30 °C for 12 h and 50 °C for 9 h gave 63% of 12d (by ¹H NMR). No p-nitrosoisobutyrophenone could be detected by GLC. Reaction of sodium p-tolylsulfinate in Me₂SO with

⁽¹⁴⁾ Kornblum, N.; Carlson, S. C.; Smith, R. G. J. Am. Chem. Soc. 1979,

^{101, 647.} (15) Blaise, E. E.; Herzog, C. R. Hebd. Seances Acad. Sci., Ser. B 1927, 184, 1332.

 O_2 in the dark for 4 h at 40 °C gave a quantitative recovery of unchanged sulfinate.

Ethyl Cyano(2-(p-nitrobenzoyl)-2-propyl)acetate (12). The anion from 1.71 g of ethyl cyanoacetate was reacted with 1.73 g of 3a in 23 mL of Me₂SO for 2 h. Acidification with dilute hydrochloric acid and ether extractions followed by recrystallization from EtOH gave 1.67 g of 12e (72%), mp 94-96 °C: ¹H NMR (CDCl₃) δ 1.36 (t, 3, J = 7 Hz), 1.52 (s, 3), 1.56 (s, 3) 4.32 (q, 2, J = 7 Hz), 4.46 (s, 1), 7.79 (d, 2, J =9 Hz), 8.35 (d, 2, J = 9 Hz); IR (Nujol) 2260, 1740, 1684, 1528, 1360, cm⁻¹; HRMS calcd for C₁₅H₁₆N₂O₆ 304.10593, found 304.10487. Anal. Calcd for C₁₅H₁₆N₂O₅: C, 59.20; H, 5.31, N, 9.21. Found: C, 59.06; H, 5.39; N, 9.14.

 α -(Phenylthio)isobutyrophenone (12f). Reaction of PhS⁻K⁺ prepared from 1.98 g of benzenethiol with 3.29 g of 3c in 50 mL of Me₂SO for 5.5 h yielded by distillation 12f (74%), bp 141 °C (0.45 torr) [lit.¹⁶ bp 133–135 °C (0.1 torr)].

α-(*n*-Butylthio)isobutyrophenone (12g). Reaction with *n*-BuS⁻K⁺ prepared from 1.70 g of butanethiol and 3.44 g of 3c in 50 mL of Me₂SO for 2 h gave by distillation 12g (67%), bp 97 °C (0.2 torr): ¹H NMR (CDCl₃) δ 0.84 (m, 3), 1.1–1.5 (m, 4) 1.55 (s, 6), 2.47 (t, 2), 7.2–7.5 (m, 3), 7.9–8.2 (m, 2); IR (neat) 1669 cm⁻¹; HRMS calcd for C₁₄H₂₀OS 236.123 49, found 236.139 95. C, 71.13; H, 8.54; S, 13.56. Found: C, 71.34; H, 8.67; S, 13.75.

α-(p-Methylbenzenesulfonyl)isobutyrophenone (12h). Reaction of 2.49 g sodium p-tolylsulfinate with 2.44 g of 3c in 40 mL of Me₂SO for 16 h at 60 °C under ordinary laboratory lighting gave by distillation 12h (82%), bp 158-163 °C (0.01 torr), mp 48-53 °C: ¹H NMR (CCl₄) δ 1.59 (s, 6), 2.46 (s, 3), 7.5 (m, 7), 8.0 (m, 2); IR (KBr) 1675, 1301, 1148, 1129 cm⁻¹; HRMS calcd for C₁₇H₁₈O₃S 302.097 67, found 302.097 04. Anal. Calcd for C₁₇H₁₈O₃S: C, 67.51; H, 6.01; S, 10.60. Found: C, 67.72; H, 6.05; S, 10.53. In Me₂SO-EtOH (1.8:1) at 60 °C for 18 h, the crude yield of 12h was 16% and isobutyrophenone could not be detected by GLC.

Reactions of *p*-Nitroisobutyrophenone and Isobutyrophenone Enolate Anions with *p*-Methylbenzenesulfonyl Chloride. Addition of 0.268 g of tosyl chloride in 2 mL of THF to *p*-O₂NC₆H₄COCMe₂⁻K⁺ in 12 mL of Me₂SO (from reaction of 0.265 g of *p*-nitroisobutyrophenone and 1 equiv of CH₃SOCH₂⁻K⁺) gave after 1 h in a crude mixture containing some *p*-nitroisobutyrophenone (~5% by ¹H NMR), but **12d** could not be detected by GLC. With PhCOCMe₂⁻K⁺, the reaction gave 19% of isobutyrophenone and **12h** was not detected.

2,2-Dimethyl-3-(*p*-nitrophenyl)-3-(1-pentynyl)oxirane (13a). A solution of *n*-PrC==C⁻Li⁺ was prepared by addition of 7 mL of a 3.4 M solution of butyllithium in hexane to 1.42 g of 1-pentyne in 40 mL of THF at -60 °C. After 4.54 g of 3a was added in 40 mL of THF, the resulting solution was allowed to warm to 30 °C over a 12-h period. Hydrolysis and ether extraction gave by distillation 13a (67%), bp 135-137 °C (0.25 torr): ¹H NMR (CCl₄) δ 1.00 (t, 3, J = 6 Hz), 1.02 (s, 3), 1.55 (sex., 2, J = 6 Hz), 1.62 (s, 3) 2.22 (t, 2, J = 6 Hz), 7.54 (d, 2, J = 8 Hz), 8.15 (d, 2, J = 8 Hz); IR (neat) 2238, 1516, 1346, 1228, 917, 850 cm⁻¹; HRMS calcd for C₁₅H₁₇NO₃: C, 69.47; H, 6.62. Found: C, 69.72; H, 6.84.

2,2-Dimethyl-3-(1-pentynyl)-3-phenyloxirane (13b). Reaction of *n*-PrC=C⁻Li⁺ (prepared from 1.90 g of 1-pentyne) with 5.14 g of **3c** in 120 mL of THF for 12 h (-60 to 30 °C) gave **13b** (96%), bp 84 °C (0.4 torr): ¹H NMR (CCl₄) δ 0.95 (t, 3, J = 7 Hz), 0.95 (s, 3), 1.50 (sex., 2, J = 7 Hz), 1.57 (s, 3), 2.17 (t, 2, J = 7 Hz), 7.3 (m, 5); IR (neat) 2238, 1230,

(16) Brownbridge, P.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1977, 1131.

898, 860 cm⁻¹; HRMS calcd for $C_{15}H_{18}O$ 214.135 77, found 214.135 20. Anal. Calcd for $C_{15}H_{18}O$: C, 84.05; H, 8.48. Found: C, 84.37; H, 8.62.

2,2-Dimethyl-3-(2-phenethynyl)-3-phenyloxirane (13c). Reaction of PhC==C⁻Li⁺ (prepared from 1.89 g of phenylacetylene) and 3.38 g of **3c** in 80 mL of THF for 12 h (-60 to 30 °C) gave **13c** (57%), bp 130-131 °C (0.25 torr): ¹H NMR (CDCl₃) δ 1.07 (s, 3), 1.72 (s, 3), 7.3 (m, 10); IR (neat) 2233, 1240, 904, 866 cm⁻¹; HRMS calcd for C₁₈H₁₆O 248.120 12, found 248.120 20. Anal. Calcd for C₁₈H₁₆O: C, 87.05; H, 6.51. Found: C, 87.22; H, 6.70.

Diethyl 2,2-Dimethyl-1-(*p***-nitrophenyl)vinyl Phosphate** (14a). Reaction of $(EtO)_2PO^-K^+$ (prepared from 4.31 g of diethyl phosphite and 3.67 g Me₃COK) with 3.39 g of **3a** in 47 mL of THF for 15 h gave after hydrolysis and ether extraction 72% of 14a by ¹H NMR. A 55% yield was isolated by distillation, bp 156–161 °C (0.15 torr): ¹H NMR (CCl₄) δ 1.20 (t, 6, J = 7 Hz), 1.74 (d, 3, J_{PH}) = 4 Hz), 1.92 (d, 3, $J_{PH} = 3$ Hz), 3.90 (p, 4, $J_{HH} = J_{PH} = 7$ Hz), 7.45 (d, 2, J = 9 Hz), 8.13 (d, 2, J = 9 Hz); IR (neat) 1516, 1349, 1271, 1030 cm⁻¹; HRMS calcd for C₁₄H₂₀NO₆P 29.10283, found 329.104 12. Anal. Calcd for C₁₄H₂₀NO₆P: C, 51.06; H, 6.13; P, 9.40. Found: C, 51.05; H, 6.28; P, 9.50.

Diethyl 2,2-Dimethyl-1-(*p*-nitrophenyl)vinyl Thiophosphate (14b). Reaction of (EtO)₂PS⁻K⁺ (prepared from 1.10 g of diethyl thiophosphite) with 1.62 g of 3a in 23 mL of THF for 3 h gave after hydrolysis, ether extraction, and distillation a 46% yield of 14b, bp 149–153 °C (0.1 torr): ¹H NMR (CCl₄) δ 1.18 (t, 6, J = 7 Hz), 1.77 (d, 3 $J_{PH} = 4$ Hz), 1.91 (d, 3, $J_{PH} = 3$ Hz), 3.94 (p, 4, $J_{PH} = J_{HH} = 7$ Hz), 7.52 (d, 2, J = 9 Hz), 8.19 (d, 2, J = 9 Hz); IR (neat) 1520, 1347, 1022 cm⁻¹; HRMS calcd for C₁₄H₂₀NO₅PS: C, 48.68; H, 5.85; P, 8.97; S, 9.28. Found: C, 48.76; H, 5.90; P, 9.04; S, 9.25.

Reactions of Diethyl Phosphite or Thiophosphite Anions with 3c. Reaction of $(EtO)_2PO^-K^+$ (from 3.55 g of diethyl phosphite) with 4.69 g of **3c** in 23 mL of Me₂SO at 50 °C for 36 h gave by distillation at 116–118 °C (0.5 torr) a 40% yield of a 1.6:1 mixture of 14e¹⁷ and an isomer which could not be separated by preparative GLC. By ¹H NMR the isomer was assigned as 16, 2-(diethoxyphosphinyl)-3,3-dimethyl-2-phenyloxirane. The vinyl methyls of 14c had δ 1.69 ($J_{PH} = 4$ Hz) and 1.88 ($J_{PH} = 2$ Hz), while the oxirane methyls of 16 had δ 0.93 ($J_{PH} = 1$ Hz) and 1.73 (s). A similar mixture of isomers was observed in the reaction of (EtO)_2PS⁻Na⁺ with 3c in EtOH at 0–20 °C for 24 h.

Registry No. 1a, 34006-49-0; 1b, 40805-50-3; 29, 95249-13-1; 2b, 95249-14-2; 3a, 83846-29-1; 3a', 42009-04-1; 3b, 83846-30-4; 3c, 7473-99-6; 4a, 72511-02-5; 4b, 83846-31-5; 4c, 29973-21-5; 5a, 83846-32-6; 5b, 83846-33-7; 5c, 83846-34-8; 6a, 83846-35-9; 6b, 83846-36-0; 6c, 7473-98-5; 8·K, 95070-46-5; 9, 3964-18-9; 10, 95249-15-3; 11, 95249-16-4; 12a, 83846-37-1; 12b, 83846-38-2; 12c, 95249-18-6; 12d, 95249-19-7; 12e, 95249-20-0; 12f, 59919-11-8; 12g, 95249-21-1; 12h, 74074-84-3; 13a, 95249-23-3; 13b, 95249-24-4; 13c, 95249-25-5; 14a, 95249-26-6; 14b, 95249-27-7; 14c, 10409-55-9; 15, 95249-17-5; 16, 95249-28-8; p-NCC₆H₄COOH₃, 1443-80-7; p-O₂NC₆H₄COCHMe₂, 10326-99-5; p-H2NC6H4COCHMe2, 95249-12-0; p-NCC6H4COCHMe2, 79341-95p=n₂: C_{614} COCIME, *b27* 12 0, *p*=100, *p=100*, *p=100*, *p=100*, *p=100*, *p* $O_2NC_6H_4COCMe_2^-K^+$, 95249-22-2; *p*-MeC₆H₄SO₂Cl, 98-59-9; *n*-Pr= C⁻Li⁺, 18643-50-0; PhC=C⁻Li⁺, 4440-01-1; (EtO)₂PO⁻K⁺, 54058-00-3; (EtO)₂PS⁻K⁺, 71774-85-1; PhS⁻K⁺, 3111-52-2; nitrocyclohexane K salt, 12385-03-4.

⁽¹⁷⁾ Borowitz, I. J.; Anshel, M.; Firstenberg, S. J. Org. Chem. 1967, 32, 1723.